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Abstract: The low-frequency magnetic field in the vicinity of 
helical three-conductor arrangements carrying symmetric 
three-phase alternating current is studied by analytical 
numerical and experimental methods. New approximate and 
simple closed-form expressions are derived for all three 
components of the three-dimensional field vector as function 
of current, distance, pitch and conductor spacing. Comparison 
is made with numerical results. Measurements on an 
experimental helical arrangement has also been done for 
verification. 
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1. INTRODUCTION 

Twisting of conductor pairs is a well known method used in 
telephone communications to minimize crosstalk among lines 
in bundled cables. The effectiveness of the method is based 
on two phenomena. One is that twisting renders each line 
immune to the magnetic field coming from the other lines. 
The other phenomenon is that the field emission from each of 
the lines is lowered by twisting. This effect of twisting can 
generally be utilized when the magnetic field is a problem. As 
an example, twisting has been used in telemetry applications 
to reduce the stray fields from power-supply leads. The 
potential of the method for low-field high-voltage power 
transmission has also been recognized, see e.g. [ l ]  for a 
futuristic overhead line application. Already practised is 
twisting of insulated high-voltage three phase power cables, a 
technique that is directly applicable to low-voltage building 
wiring. Another potential application is substation busbars. 

Despite its importance, the theory of twisted lines has been 
surprisingly sparsely covered in the literature. Review 

discloses that an analytical solution for the twisted pair in 
form of an infinite series containing Bessel functions was 
given by H. Buchholz as early as 1937, [2], and later 
expounded on in [3]. This pioneering work was, as it seems, 
long unknown to the American electromagnetic compatibility 
community, which instead quote [4] with a similar solution as 
the main reference, e.g. [5]  studying the one-phase two-wire 
case and [6] the three-phase three-wire case. These papers as 
well as [7], correcting [5] and referencing [2], deal also with 
approximations to the rather bulky series-type solution. 
Except for [8] and [9], which attempt direct ways of 
approximation, all known papers utilize that the first term of 
the series is dominant in the practically interesting cases. 

Unfortunately, many of the papers mentioned contain certain 
errors which makes direct use for field prediction hazardous. 
The object of this paper, therefore, is to present a revised and 
extended theory for both two-wire and three-wire twisted 
lines. It will then be seen that the characteristics of the field 
have at the same time qualitative differences and similarities 
which seems to have been overlooked. The analytic theory 
will be supported by numerical evaluation as well as 
experiment. 

2. THE EXACT THEORY 

2.1 Procedure 

Exact expressions for the static and quasi-static field from the 
one-wire, two-wire and three-wire helix will be given. The 
current is supposed to be filamentary and the configuration 
infinitely extended in both ends. As will be shown, the two- 
and three-wire cases can directly and in basically the same 
way be derived from the one-wire case once the solution of 
this is known. 

2.2 Single wire helix 

According to the law of Biot-Savart, the magnetic flux 
density vector of a helical line current I is 
given by the line integral 
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along the helix, where F is the field point and ?‘the source 
point variable, see Fig. 1. In the figure, a is the radius of the 
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cylinder on which the conductor can be considered to be 
wound, and p is the pitch of the helix. MKSA-units are used 
so that B is given in Teslas. The constant lo is' the 
permeability of free space (41~.10-~) .  This integral cannot be 
calculated analytically in a direct manner. However, the 
integrand can be series expanded in terms whose integrals can 
be given in the form of Bessel functions. In cylinder co- 
ordinates r, $ and z ,  see Fig. l ,  the radial, azimuthal and axial 
components B, , Bb and B, , respectively, are 

2n: with k = - 
P 

Here In(z) and Kn(z,) are the modified Bessel functions of 
first and second kind of order n, see [lo] and ZA(z) and 

KA(z) their derivatives. Eq. (2) is by H. Buchholz. The 
screw-type character of the field is apparent since the field is 
constant on helices where ($ - kz) is constant. 

The problem has recently been revisited in [ 111. Eq. (2) holds 
for r>a and a similar equation applies to the case r<a, i.e. 
inside the cylinder. 

Some limiting properties of the solution are worth 
mentioning. For very large distances the three Bessel-function 
sums may be shown to go to zero much faster than the 
inverse -r term of B+ , so that the only field component 

ultimately left will be BQ = yoZ/(2nr) which is the field of an 

infinitely long straight conductor carrying current I .  This tells 
that you can not get rid of the field from a single conductor by 
twisting it. The same field is the boil-down of (2) for any 
distance when p tends to infinity, so that the helix degenerates 
into a line. 

Another extreme case is when p tends to 0. If Z is supposed to 
tend simultaneously to 0 while Z/p is kept constant, the current 
distribution will approach a purely azimuthal surface current 
on the cylinder surface. In this case all three field components 
vanish, which was to be expected from the theory of 
solenoids where the field is concentrated to the inner of the 
cylinder. 

2.3 Two-wire helix 

Without loss of generality, we may set $o = O  for the 
conductor carrying current Z and qo = n: for the conductor of 
current -I. The field from each of the helices is given by (2), 
and the total field is found by summation. Thus as the even 
order terms will cancel pairwise while the odd will double, 
we arrive at 

2na 2nr 
withq=- y = -  

P P 

where the summations range over n=1,3,5. These are the 
expressions derived in the pioneering work [2]. For sinusoidal 
current of angular velocity w, I is to be replaced by I sin(ot), 
where Z is the peak value. Up to sign, the expressions will 
also hold as they stands for the effective values of the B- 
components with I denoting the effective value of the current. 

.. 

2.4 Three-wire helix 

We label the wires by i=l, 2 and 3 and define their locations 
q i  and current phase angles ai by $i = (i- l )2n  / 3 and 

ai = (i - I)2n / 3 . The currents are then li = i sin(at +a i )  . 
Term-wise addition of the three fields yields as factors inside 
the summation signs in (3) 

/ --% Q = @ 

Figure 1 Helical line current 
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3 
C ~in(0i)t + ai ) COS[.($ - $ i - k ~ ) ]  = - sin(ot k n@) 

3 
2 

The two- and three-wire cases will be treated in a parallel 
way. The procedure followed will include extracting the first 
term of the Bessel series for each field component. In this 
way we achieve an intermediate approximation which will not 
be used as it stands but will be further approximated using 
approximations to the Bessel factors. 

i=I 
with @ = $ - k z  
for n=1,2,4,5 ... and zero for n=3,69..., where the Upper sign 
applies for n=2,5,8 ... and the lower for n=1,4,7 .... Thus 

3.2 The two-wire case 

,. The first-term field components given in effective value scale 
3 /.Lola ' are from (3) 
2 nr n 

B$ = - ~ y ~ n ~ , ( n q ) ~ , ( n y ) s i n ( o t  kn@) 

B, = -2- '"°Fy2Zj(q)Kj(y)sin(@ - kz )  
nr 

B - 2 ~ y Z j ( q ) K l ( y ) c 0 s ( $  - kz)  
with the index and sign convention of above. The effective '- nr 

(7) 

values of the field components and the total field B can be Bz = seen to be given by 

An approximate expression for the effective value of the total 
field can now be given, but is not shown in this presentation. 
It is observed that the screw-form field structure of the single 
wire helix is retained. 

2 nr 
1/2 

(6) 

K,(ny)K,(my)cos(rtnT m p  'I" 
1'" ~,(ny)~,(my)cos(+n~ 

3. APPROXIMATIONS 

3.1 The first-term approximation 

To find the field for the untwisted case we use the small 
argument approximations of the pertinent Bessel functions 
according to 

For the twisted case we use the large argument 
approximations to the Bessel functions according to 

For certain cases of parameter values for a and p,  the first 
term of the series expansions will be so dominant that it can 
serve as an approximation for the whole sum for certain 
values of the variable r. Two limiting cases will be studied in 
particular. For both cases we assume that the configuration is 
loosely twisted in the meaning that a<<p. This probably will 
be the case in all feasible power system applications. One of 
the limiting cases is the untwisted line achieved by letting p 
tend to infinity seen ai a large distance so that r>>a but with 
r < < p .  The other limiting case is with the field-point very 
distant so that r>>p. For this case it will show that the 
effective values of the total field for the twisted and straight 
cases, B and Bo can be written as B = FBo . Bo is different for 
the two- and three-wire cases, but F will be the same. F is 
called "twist factor". 

Then, using again the approximation for Z;(q) of above, we 
arrive at 

B, = FBo sin($ - kz)  Bz = FBo cos($ - kz )  B$ = 0 (9) 
B =  FBo 

It is noted that the twist-factor applies individually to the 
component fields as well with z=O and the 9- and z- 
coordinates interchanged. 
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3.3 The three-wire case 

The approximated effective value field components are from 
(6) 

Contrary to the two-wire case, this field does not possess a 
screw-form structure, but is constant for constant r 
independent of $ and z. 

For the untwisted case we have 

corresponding to (8) for the two-wire case. 

For the twisted case we have 

corresponding to (9) for the two-wire case. We see that the 
twist-factors are identical, which was prospected. Also in this 
case we have that F applies individually to the component 
fields with 4 and z interchanged. We further note that the total 
three-phase field is higher by a factor of 3& I 4  = 1.06. 

As an illustration of what field reduction can be brought 
about by twist of a triangular configuration, we see that for 
distance to pitch ratios r/p equal to 1 and 2 F is equal to 
0.037 and 0.00020, respectively. This shows the extreme 
fastness in field decay with distance. Different, and much less 
dramatic twist-factor values are presented in [ 11, where the 
total field decay seems to be of inverse cubic form rather than 
exponential. This discrepancy could maybe be explained by 
that a too short line may have been used. 

4. VERIFICATIONS 

4.1 Scope 

The object here is to verify the correctness of the Bessel- 
function expansion formulas and to demonstrate the precision 
of the approximate method. A laboratory experiment was also 
performed to show the correspondence between the 
theoretical solution and reality. 
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Figure 2 Analytical prediction of radial component 
magnetic field 
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Figure 3 Approximate, exact and untwisted total magnetic 
field 

4.2 Analytical solution vs numerical 

In order to guarantee the correctness of the analytical solution 
presented in the paper, comparison has been made with a 
numerical solution based directly on (1). The agreement was 
found to be excellent in all cases tested, but is not 
demonstrated in this paper. 

4.3 Precision of the approximation 

Fig. 2 shows, for a certain three-phase case, the series 
expansions of B ,  of (6) based on 1, 2, 3 and 4 terms. Here 
a=0.1 m, p=l m, r =0.2 m, and Z=1 A. The comparison is 
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made for varying (q-kz) covering all possible field points on 
the cylinder. Here, the 1-term case corresponds to the 
approximation according to (10). It is seen that the variation 
with (q-kz) is quite significant in this near field region, but 
that the convergence is fast when terms are added. Anyhow, 
the first-term approximation seems to be a good estimate of 
the averaged field. Corresponding diagrams for greater 
distances would show that the variations are gradually wiped 
out. The same will apply to the other two components. 

Fig. 3 shows the approximation according to (12) applied to 
the configuration above with 1=200 A alongside of the exact 
solution for varying r. It appears that the approximation 
works well even when y is not very large. As a rule of thumb, 
the error will be smaller than 10% when p 1 0  as long as 
<OS. Also shown is the untwisted case. The difference 
between the approximate and the untwisted cases is just the 
twist-factor F. 

4.4 Theory vs experiment 

A rig consisting of three plastic coated 50 mm2 stranded 
copper wires helically wound on a 11 m long plastic pipe of 
0.2 m diameter was constructed. The wires were electrically 
connected at one end and fed by a balanced 200 A, 50 Hz 
sine current in the other end, see Fig. 4. The experiment was 
performed for two pitches: 0.5 m and 1.0 m. The three 
components were measured at various positions in an axial 
plane by use of a one-coil magnetic-field meter. 

The probe of the meter was mounted on a wooden block 
designed to keep the center of the coil in an axial plane for all 
three measuring positions. For each distance, the field at six 
points spaced 0.1 m was measured and the average value was 
used for comparison with the prediction of the numerical 
method, see Fig. 5, for the results with the 1.0 m pitch. The 
agreement is seen to be excellent in a near zone. The 
deviations for larger distances was found to originate mainly 
from deviations of the windings from perfect helices by 

I 

Measuring table 

jOO ".- ........................ .................. I ....................... 

04 0.6 0.8 1.0 

Figure 5 Experimental (designated by circles) and 
theoretical magnetic field components 

experimenting, and slight adjustments of these would have 
pushed the range of agreement up to even greater distances 
until the ambient field and maybe also any unsymmetry in the 
three-phase current would be limiting. In any case, comparing 
with the calculated field of an untwisted configuration, the F- 
factor actually achieved for the total field is 0.042 at r=l m as 
compared with the theoretical value 0.037. For r above, the F 
achieved will decrease, even if not as much as theoretically 
predicted . In effect this decrease will be about inverse cubic 
with distance, which would indicate a small localized 
deviation from a perfect helix. 

5. DISCUSSION 

It is interesting to compare configuration twist with other 
field reducing options. One such is phase-split, meaning that 
the current of each of the phases is distributed equally on two 
subphases placed diametrically on a circle or in a 
corresponding way, see e.g. [9]. By this, the exponent of r for 
the far field decay is raised from two to three. By further 
phase split, in principle any exponent can be achieved. But 
twisting beats eventually for large distances any such 
arrangement as the field decay is exponential! 

Further, for uninsulated conductors, the phase-split method 
entails proportional enlargement of the radius with degree of 
splitting to maintain insulation, which will compromise the 
reduction of the near field. In this context it is interesting to 
note that the influence of the radius a on the field magnitude 
is contained in that of the untwisted reference field BQ, 
implying that the field is not more than proportional to the 
radius. 

Figure 4 Experiment sei up 
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6. CONCLUSIONS 

The power-frequency magnetic fields of two-wire one-phase 
and three-wire three-phase twisted conductor configurations 
have been studied, in order to assess the potential as a field 
reducing option in power systems. A review of the literature 
on electromagnetic compatibility revealed that H. Buchholz 
presented an analytical solution for the field of the generic 
infinite current-carrying one wire helix as early as 1937. The 
form of the solution is an infinite series of products of 
modified Bessel functions. Departing from this solution, the 
field of the two-wire and three-wire cases can easily be 
established by superposition. 

Since this series-type solution is rather bulky, approximations 
are wanted. One approximation used in the literature consists 
in keeping only the first term of the sum as an approximation 
to the complete sum. The paper addresses two important 
limiting cases where such a first-term approximation is valid. 
One of these cases is when the distance to the line is much 
smaller than the pitch of the helix but at the same time much 
greater than the radius of the helix, in which case the field of 
the configuration degenerates into that of a straight line. The 
other and less trivial case is when the pitch is much smaller 
than the distance but much greater than the radius. In this case 
a so called "twist-factor'' of the form 

can be derived. F is the field reduction achieved by twisting a 
straight line. Here r is the distance from the line and p the 
pitch of the helix. 

The paper, which revises some earlier research, shows that F 
applies to the field of the three-wire case as well as to that of 
the two-wire case. One important difference, however, is that 
while the two-wire field retains its screw-type variation for 
the radial and axial field components, the corresponding 
variations will vanish in the three-wire case. The azimuthal 
field component vanishes in both cases. 

The analysis is supported by numerical simulations departing 
directly from the Biot-Savart law and by laboratory 
experiments on a rig of the three-phase case. 
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