12VDC input, modified squarewave 220VAC output. First stage is 12VDC to 260VDC push-pull switchmode operating at 33kHz. Second stage is H-bridge dc-ac inverter operating at 100Hz (for 50Hz output). TL494 regulator for each stage. Green LED operating status. Common 0VDC with HVDC.

First stage regulator error amps for 10V under-voltage, and 14.8V over-voltage inhibits. No duty cycle regulation of output voltage. No load: 234V at 10V; 266V at 12V (1.4W loss); 309V at 14V.

Second stage regulator error amps for soft-start, and AC output current limiting. Duty-cycle of AC output H bridge regulated by output DC voltage (via DTC), first-stage inhibits (also via DTC), AC output current (via error amp 1), and soft-start (via error amp 2).

PCB: LSD-75W

TL494 U1 controls 12VDC push-pull transformer using IRF3205, with 1,000uF 16V input cap.

TL494 U1 error amp 1 provides high voltage shutdown set at 14.8V (5.0V ref).

TL494 U1 error amp 2 provides low voltage shutdown set at 10V, with RC filtering (5.0V ref).

TL494 U1 feedback taken to TL494 U2 DTC to inhibit H-bridge duty cycle — with 0% duty cycle when above 4.0V. Deadtime set for maximum 45%. RT=3k3; Fosc = 33kHz (CT \sim 10nF)

E type core 28/17/11 plus 28/3/11 E-I with 12 pin former. HER208 diode full bridge rectifier with 2.2uF 400V filter.

TL494 U2 uses push-pull output to control VAC H-bridge using IRF830.

TL494 U2 error amp 1 provides output current limiting across 1Ω sense resistor via RC filtering, with 0.54Apk detection level.

TL494 U2 error amp 2 provides soft-start duty-cycle, with RC filtering on inverting input.

TL494 U2 DTC input pulled up from HT Vdc via 20% divider and zener diode, and also via diode isolated feedback pin from U1. RT=120k; CT=100nF; Fosc = $^{\sim}$ 100Hz

Modifications

Add 470nF 25V ceramic smt cap bypass on Vc (Tx1 pins).

Add 10nF 500V ceramic smt cap bypass on Vht (diode pins).

Remove H-bridge fets.

Remove Vc from U2 (cut trace on rear of pcb going towards U2), and remove 78L05 – these changes lower power loss by 0.25W.

Heatsink T2 and T4 (isolated).

Smt RC snubber on Tx1 secondary perhaps – check.

It may be possible to isolate 12VDC from HVDC, and connect HVDC to +12VDC input to obtain negative bias supply as well as heater supply from 12VDC input.

Marketing info:

- •Max. output power: 100W, continuous output power: 75W
- •With the multiple protection circuit, it would do no harm to the equipment and automobile
- Please pull out this product from the cigar socket when you do not use this product
- •Input voltage range DC 11V-15V
- •Output voltage range AC 220V, not use for AC 110V
- •Max, output power 100W
- Continuous output power 75W
- Over voltage shutdown DC 15V-16V
- •Low voltage shutdown DC 10V-10.5V
- •USB output DC 5V

http://dalmura.com.au/projects/75W car inverter.pdf

Another similar 75W inverter

Changes noticed were: no dc fuse; heatsinking of push-pull fets; high voltage shutdown level of 18.5V; core size 28/20/10; UF4007 bridge diodes; 3.3uF 400V cap; IRFS730 bridge fets; MC34063 buck conversion stage for 5V USB; AC terminals on pcb; USB connector on pcb. It appears the pcb could be cut along the AC output terminal rectangular pad lines to make a significantly smaller pcb size. Measured: 12V for 236V no load; 14V for 274V no load; low voltage ~11V on, and 10V off; high voltage ~14.5V off.

