#### (vi) Cathode bias

See Sect. 5(vi) as for push-pull triodes, except that the screen dissipation must also be checked.

### (vii) Parasitics

See Sect. 5(vii) as for push-pull triodes, also Sect. 3(iii)H.

## (viii) Phase inversion in the power stage

In the interests of economy, push-pull is sometimes used in the output stage without a prior phase inverter. All such methods—except the Cathamplifier—have inherently high distortion, and some have serious unbalance between the two input voltages.

#### (A) Phase inverter principle (Fig. 13.44)

The grid of  $V_2$  is excited from the voltage divider  $R_2R_4$  across the output of  $V_1$ ,  $R_3 + R_4$  must be very much greater than the load resistance (say 50 000 ohms).  $R_5$  and  $R_6$  are grid stoppers. All other components are normal.  $R_k$  may be bypassed if desired.

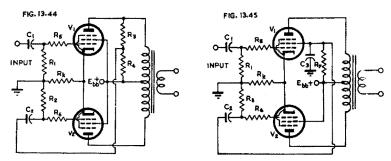



Fig. 13.44. Push-pull circuit using phase inversion in the power stage. Fig. 13.45. Push-pull circuit using screen resistance coupling from  $V_1$  to the grid of  $V_2$ .

The signal voltage on the grid of  $V_2$  must first pass through  $V_1$  where it is distorted, then through  $V_2$  where it will be distorted again. Thus the second harmonic will be the same as for a single valve, and the third harmonic will be approximately twice the value with balanced push-pull. The balance, if adjusted for maximum signal, will not be correct for low volume, owing to the third harmonic "flattening."

# (B) Screen resistance coupling (Fig. 13.45)

This is a modification of (A) being an attempt to obtain from the screen a more linear relationship than from the plate. No comparative measurements have been published.  $R_7$  may be about 1500 ohms for type 6V6-GT or 2500 for type 6F6-G, with  $E_b = E_{c2} = 250$  volts—the exact value should be found experimentally;  $C_3$  may be 0.002  $\mu$ F. For better balance an equal screen resistor might be added for  $V_2$ . Ref. E10.

# (C) Common cathode impedance (Fig. 13.46)

 $R_1$  and  $R_2$  in series provide a common cathode coupling impedance [see Chapter 12 Sect. 6(vi)].  $R_2$  may have a value of, say, 1000 ohms to give an approach towards balance, but necessarily must carry the plate currents of both valves—say, 70 or 80 mA—and will have a voltage of, say, 70 to 80 with a dissipation around 6 watts. Care should be taken to avoid exceeding the maximum heatercathode voltage rating.

See Reference E23.

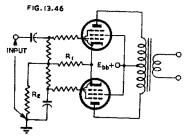



Fig. 13.46. Push-pull circuit with common cathode impedance coupling.

#### (D) The Parry "Cathamplifier"

The basic circuit is Fig. 13.46A, the two cathodes being coupled by a centre-tapped a-f transformer, whose secondary winding excites the grid of  $V_2$ . A theoretical analysis is given in Ref. E29, while some practical designs are in Ref. E30.

For balance, 
$$\frac{N_3}{N_1+N_2}=\frac{1+g_mR/2}{g_mR}$$
 and  $N_1=N_2$ 

where  $g_m = \text{mutual conductance of } V_2$ .

Distortion is reduced by the factor T(2T - 1) where  $T = N_3/(N_1 + N_2)$ .

Note that T should normally be slightly greater than 1.

Gain is reduced by the factor T(T - 0.5).

The common cathode resistor  $R_0$  helps to reduce unbalance.

In practice, R is made variable (say 100 ohms total) so as to permit the amplifier to be balanced experimentally. One method is to connect a valve voltmeter across  $R_0$ , and to adjust R for minimum reading.

Instability may occur if R is too small.

A modified circuit is Fig. 13.46B in which the centre-tapped primary of  $T_1$  is not necessary.

Fig. 13.46C permits both a.c. and d.c. balancing.

Fig. 13.46D keeps the circulating screen current out of the cathode circuit and so maintains the ratio between plate and screen currents at the negative voltage peak swing. Resistors  $R_1$  are to prevent coupling from cathode to cathode through the screen by-pass condensers; their values should be low—say 100 to 250 ohms each.

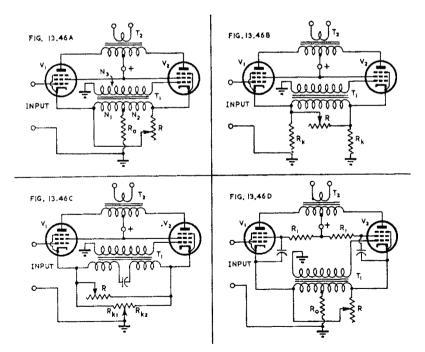



Fig. 13.46A. Basic circuit of Parry Cathamplifier, (B) Modified circuit, (C) With both a.c. and d.c. balancing, (D) Keeps circulating screen current out of cathode circuit (Ref. E30).